Many of us are most familiar with prime factorization, which is a way of taking a number and breaking it down into its constituent primes. An example of prime factorization is as follows: One finds the “simplest” representation of the given quantity in terms of smaller parts—in the case of 15, the factors would be 1, 3, 5, and 15 (essentially, all the numbers that will divide integrally into 15). Not that prime factorization is always that easy. Larger numbers make it more difficult to factor, and many sophisticated prime algorithms have been devised for larger—and different types—of numbers.