Algebra Explained

What is a linear equation?

As the term suggests, linear equations have to do with lines; and in algebra, a linear equation means certain equations (or functions) whose graph is a line (for an extensive explanation of graphs, see “Geometry and Trigonometry”). More specifically, in algebra, a linear equation is one that contains simply the variable, which makes them one of the simplest types of equations. For example, a linear equation in one variable has one unknown (the variable) represented by a letter; this letter, usually x, is always to the power of 1, meaning there is no x2 or x3 in the equation.

For instance, x + 3 = 9 is a simple linear equation. To solve such an equation, one must either add, subtract, multiply, and/or divide both sides of the equation by numbers and variables—and do this in the correct order—to end up with a solution: a single variable and single number on opposite sides of the equals sign. In this case, the solution to the linear equation is x = 6.

Finally, linear equations can be further broken down. For example, in the linear equation ax + by + cz + dw = h, in which a, b, c, and d are known numbers and x, y, z, and w are unknown numbers, if h = 0, the linear equation is said to be homogeneous.


This is a web preview of the "The Handy Math Answer Book" app. Many features only work on your mobile device. If you like what you see, we hope you will consider buying. Get the App